Si
et
désignent deux opérateurs linéaires quelconques. et agissant
respectivement dans
et
, on définit le produit tensoriel de ces
deux opérateurs par son action sur les vecteurs de base :
![]() |
Question 5-1 : Montrez que la matrice représentative de l'opérateur
est le produit direct des matrices représentatives de
et
:
![]() |
d'où il résulte plus généralement :
![]() |
Le produit de deux tels opérateurs est défini par :
![]() |
Question 5-2 : Justifiez la relation précédente, en montrant que le produit matriciel des deux produits directs du premier membre est bien égal au produit direct des deux produits matriciels du second membre.
Pour simplifier les notations, on écrit souvent simplement :
![]() |
de telle sorte que, quels que soient
et
:
![]() |
![]() |
et donc :
![]() |
On remarquera toutefois que cette notation est incorrecte, puisqu'il est sans
signification de faire le produit de deux opérateurs, l'un
agissant dans
et l'autre
agissant dans
.
Toutefois la notation simplifiée
fait bien apparaitre que deux
opérateurs agissant dans des espaces différents commutent toujours.
Ici encore, comme pour les vecteurs, tout opérateur agissant dans l'espace
produit n'est pas nécessairement factorisable en un produit de deux
opérateurs agissant dans les espaces facteurs. Par exemple :
![]() |